113 research outputs found

    Statistical ensembles without typicality

    Get PDF
    Maximum-entropy ensembles are key primitives in statistical mechanics from which thermodynamic properties can be derived. Over the decades, several approaches have been put forward in order to justify from minimal assumptions the use of these ensembles in statistical descriptions. However, there is still no full consensus on the precise reasoning justifying the use of such ensembles. In this work, we provide a new approach to derive maximum-entropy ensembles taking a strictly operational perspective. We investigate the set of possible transitions that a system can undergo together with an environment, when one only has partial information about both the system and its environment. The set of all these allowed transitions encodes thermodynamic laws and limitations on thermodynamic tasks as particular cases. Our main result is that the set of allowed transitions coincides with the one possible if both system and environment were assigned the maximum entropy state compatible with the partial information. This justifies the overwhelming success of such ensembles and provides a derivation without relying on considerations of typicality or information-theoretic measures.Comment: 9+9 pages, 3 figure

    Using deep learning to construct stochastic local search SAT solvers with performance bounds

    Full text link
    The Boolean Satisfiability problem (SAT) is the most prototypical NP-complete problem and of great practical relevance. One important class of solvers for this problem are stochastic local search (SLS) algorithms that iteratively and randomly update a candidate assignment. Recent breakthrough results in theoretical computer science have established sufficient conditions under which SLS solvers are guaranteed to efficiently solve a SAT instance, provided they have access to suitable "oracles" that provide samples from an instance-specific distribution, exploiting an instance's local structure. Motivated by these results and the well established ability of neural networks to learn common structure in large datasets, in this work, we train oracles using Graph Neural Networks and evaluate them on two SLS solvers on random SAT instances of varying difficulty. We find that access to GNN-based oracles significantly boosts the performance of both solvers, allowing them, on average, to solve 17% more difficult instances (as measured by the ratio between clauses and variables), and to do so in 35% fewer steps, with improvements in the median number of steps of up to a factor of 8. As such, this work bridges formal results from theoretical computer science and practically motivated research on deep learning for constraint satisfaction problems and establishes the promise of purpose-trained SAT solvers with performance guarantees.Comment: 15 pages, 9 figures, code available at https://github.com/porscheofficial/sls_sat_solving_with_deep_learnin

    Distribution and volume based scoring for Isolation Forests

    Full text link
    We make two contributions to the Isolation Forest method for anomaly and outlier detection. The first contribution is an information-theoretically motivated generalisation of the score function that is used to aggregate the scores across random tree estimators. This generalisation allows one to take into account not just the ensemble average across trees but instead the whole distribution. The second contribution is an alternative scoring function at the level of the individual tree estimator, in which we replace the depth-based scoring of the Isolation Forest with one based on hyper-volumes associated to an isolation tree's leaf nodes. We motivate the use of both of these methods on generated data and also evaluate them on 34 datasets from the recent and exhaustive ``ADBench'' benchmark, finding significant improvement over the standard isolation forest for both variants on some datasets and improvement on average across all datasets for one of the two variants. The code to reproduce our results is made available as part of the submission.Comment: 7 page

    Structure of the Resource Theory of Quantum Coherence

    Get PDF
    Quantum coherence is an essential feature of quantum mechanics which is responsible for the departure between the classical and quantum world. The recently established resource theory of quantum coherence studies possible quantum technological applications of quantum coherence, and limitations that arise if one is lacking the ability to establish superpositions. An important open problem in this context is a simple characterization for incoherent operations, constituted by all possible transformations allowed within the resource theory of coherence. In this Letter, we contribute to such a characterization by proving several upper bounds on the maximum number of incoherent Kraus operators in a general incoherent operation. For a single qubit, we show that the number of incoherent Kraus operators is not more than 5, and it remains an open question if this number can be reduced to 4. The presented results are also relevant for quantum thermodynamics, as we demonstrate by introducing the class of Gibbs-preserving strictly incoherent operations, and solving the corresponding mixed-state conversion problem for a single qubit

    Variance of Relative Surprisal as Single-Shot Quantifier

    Get PDF
    The variance of (relative) surprisal, also known as varentropy, so far mostly plays a role in information theory as quantifying the leading-order corrections to asymptotic independent and identically distributed (IID) limits. Here, we comprehensively study the use of it to derive single-shot results in (quantum) information theory. We show that it gives genuine sufficient and necessary conditions for approximate state transitions between pairs of quantum states in the single-shot setting, without the need for further optimization. We also clarify its relation to smoothed min and max entropies, and construct a monotone for resource theories using only the standard (relative) entropy and variance of (relative) surprisal. This immediately gives rise to enhanced lower bounds for entropy production in random processes. We establish certain properties of the variance of relative surprisal, which will be useful for further investigations, such as uniform continuity and upper bounds on the violation of subadditivity. Motivated by our results, we further derive a simple and physically appealing axiomatic single-shot characterization of (relative) entropy, which we believe to be of independent interest. We illustrate our results with several applications, ranging from interconvertibility of ergodic states, over Landauer erasure to a bound on the necessary dimension of the catalyst for catalytic state transitions and Boltzmann’s H theorem

    Von Neumann entropy from unitarity

    Get PDF
    The von Neumann entropy is a key quantity in quantum information theory and, roughly speaking, quantifies the amount of quantum information contained in a state when many identical and independent (i.i.d.) copies of the state are available, in a regime that is often referred to as being asymptotic. In this Letter, we provide a new operational characterization of the von Neumann entropy which neither requires an i.i.d. limit nor any explicit randomness. We do so by showing that the von Neumann entropy fully characterizes single-shot state transitions in unitary quantum mechanics, as long as one has access to a catalyst—an ancillary system that can be reused after the transition—and an environment which has the effect of dephasing in a preferred basis. Building upon these insights, we formulate and provide evidence for the catalytic entropy conjecture, which states that the above result holds true even in the absence of decoherence. If true, this would prove an intimate connection between single-shot state transitions in unitary quantum mechanics and the von Neumann entropy. Our results add significant support to recent insights that, contrary to common wisdom, the standard von Neumann entropy also characterizes single-shot situations and opens up the possibility for operational single-shot interpretations of other standard entropic quantities. We discuss implications of these insights to readings of the third law of quantum thermodynamics and hint at potentially profound implications to holography

    By-passing fluctuation theorems

    Get PDF
    Fluctuation theorems impose constraints on possible work extraction probabilities in thermodynamical processes. These constraints are stronger than the usual second law, which is concerned only with average values. Here, we show that such constraints, expressed in the form of the Jarzysnki equality, can be by-passed if one allows for the use of catalysts---additional degrees of freedom that may become correlated with the system from which work is extracted, but whose reduced state remains unchanged so that they can be re-used. This violation can be achieved both for small systems but also for macroscopic many-body systems, and leads to positive work extraction per particle with finite probability from macroscopic states in equilibrium. In addition to studying such violations for a single system, we also discuss the scenario in which many parties use the same catalyst to induce local transitions. We show that there exist catalytic processes that lead to highly correlated work distributions, expected to have implications for stochastic and quantum thermodynamics

    Bounding the resources for thermalizing many-body localized systems

    Get PDF
    Understanding under which conditions physical systems thermalize is a long-standing question in many-body physics. While generic quantum systems thermalize, there are known instances where thermalization is hindered, for example in many-body localized (MBL) systems. Here we introduce a class of stochastic collision models coupling a many-body system out of thermal equilibrium to an external heat bath. We derive upper and lower bounds on the size of the bath required to thermalize the system via such models, under certain assumptions on the Hamiltonian. We use these bounds, expressed in terms of the max-relative entropy, to characterize the robustness of MBL systems against externally-induced thermalization. Our bounds are derived within the framework of resource theories using the convex split lemma, a recent tool developed in quantum information. We apply our results to the disordered Heisenberg chain, and numerically study the robustness of its MBL phase in terms of the required bath size. The thermalization of many-body localization phases poses a number of open questions related to our understanding of thermalization in quantum systems. Here, the authors aim to demonstrate that a quantum information approach can be used to investigate the mechanisms of thermalization in a quantum many-body system when coupled to an external system
    • …
    corecore